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1. DOCUMENT CONVENTIONS

The following conventions are used throughout this document:

• The term "formal testing" has two meanings. Traditionally, "formal testing" has been used to
describe an official test occurring at the end of each life cycle phase and demonstrating that
software is ready for intended use. It includes the following:

o Approved Test Plan and Procedure

o Quality Assurance (QA) witnesses

o Record of discrepancies (Problem Reports)

o Test Report

With the invention of more advanced software, the term "formal testing" also refers to a type of
mathematical testing using Formal Methods. Formal Methods include the following types of tests:

o Model Checking

o Theorem Proving

o Static Analysis

o Runtime Monitoring

Therefore, to avoid on confusion in this document, the traditional use of "formal testing" has been
replaced with the term "official testing". The term "formal testing" used in this document means
formal mathematical testing (i.e. Formal Methods).

The term "Program" is used as a generic term to describe a mission or project conducted at
NASA. For example, this document contains a survey of the Deep Space One Program, rather
than the Deep Space One Mission.

The term "Advanced Software" is used to describe rule-based expert systems, model-based
reasoning software and/or artificial intelligence (AI) software.

The term "meta-moder' refers to a model in a generic or high-level format. It does not refer to the
traditional use of the term "meta" meaning information about information.
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2. EXECUTIVE SU.MMARY

The NASA Ames Research Center Automated Software Engineering (ASE) group prepared this report as

the deliverable for Task 5.3.3.1 "New V&V Tools for Diagnostic Modeling Environment (DME)" highlighted

in green on Figure 1. It is the third report for Task 5.3.3 "V&V", highlighted in blue on Figure 1.

Space Launch Initiative (SLI)
2nd Generation RLV TA-5 IVHM

I I t I

I 5"31VHM I I s4_HMInt_ra"°_Na'idati°°ITechnologySystems

5.3.1 System Level Architecture J

5.3.3.1 Survey NASA V&V

& IVHM V&V

(Report 1)

1

l 5.3.2 Diagnostic

Modeling Environment (DME)

5.3.3.2 Analyze Formal

Methods for V&V

(Report2)

Legend:

• SLI Space Launch Initiative

• IVHM Integrated Vehicle Health Management

• V&V Verification and Validation
• RLV Re-usable Launch Vehicle

(Note: The current space shuttle is the 1stGeneration RL V. _be goal of SLI is to upgrade the space
shuttle to the 2 n_Generation RL V)

Figure 1" SLI 2nd Generation RLV TA-5 IVHM Project Structure

The purpose of this report is to provide Correctness and Reliability Criteria for V&V of 2nd Generation
RLV Diagnostic Modeling Environment, describe current NASA Ames Research Center (ARC) tools for
V&V of Model Based Reasoning systems and discuss the applicability of Advanced V&V to DME.

This report is divided into the following three sections:

• Correctness and Reliability Criteria

• Tools for V&V of Model Based Reasoning

• Advanced V&V Applicable to DME

The Executive Summary includes an overview of the main points from each section. Supporting detail,

diagrams, figures and other information are included in subsequent: sections. A glossary, acronym list,

appendices and references are included at the end of this report.
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2.1. CORRECTNESS AND RELIABILITY CRITERIA
This section provides a list of criteria for model-based diagnosis systems like those considered for 2 r_
Generation RLV IVHM. The criteria relate to the following components:

• Diagnosis engine

• Diagnosis model

• Physical system

Correctness and Reliability criteria are listed in alphabetical order and described in Section 3.

• Accuracy

• Engine Correctness

• Integration Correctness

• Internal Sanity

• Physical System Correctness

• Suitability for Diagnosis

2.2. TOOLS FOR V&V OF MODEL BASED REASONING
This section describes new tools at NASA Ames Research Center (ARC) to automate verification of
Livingstone Models, a key technology proposed for 2 nd Generation RLV IVHM.

Tools include MPL2SMV, JMPL2SMV and Livingstone PathFinder. MPL2SMV and JMPL2SMV
automatically translate Livingstone models to SMV for verification then translate back for verification
results logs called counterexamples.

Note: MPI_2SMV is used for version one of Livingstone and JMPI.2SMV is used for version two.

Livingstone PathFinder provides an automatic way to analyze Livingstone-based diagnosis applications
including a Livingstone simulator ....

The benefits of MPL2SMV and JMPL2SMV are listed below:

• Provides robust verification of advanced IVHM software making it possible to meet stringent
certificationstandards so the 2 nd Generation RLV can take advantage of advanced IVHM
software in flight and on the ground

• Shields Livingstone application designers from the technicalities of SMV (Symbolic Model
Verifier) while providing them access to powerful model checking capabilities

• Improves reliability of Livingstone models making missions using Livingstone safer

• By investigating all model states during a simulation, MPL2SMV quickly finds anomalies during
early phases of the Software Life Cycle, thereby reducing program costs

The benefits of Livingstone PathFinder include:

• Provides automatic way to analyze Livingstone-based diagnosis applications across a wide range
of scenarios. Scenarios include tests for commands to be issued and faults to be injected making
verification of Livingstone fast and robust.

• Contains a simulator for the device upon which diagnosis is performed making it possible for test
engineers to create a very effective test bed

1/25/2002



NEW V&V TOOLS FOR DIAGNOSTIC MODELING ENVIRONMENT (DME) Page 8

• Provides three search strategies: all errors, one error and shortest error trace. It also has
optional reporting of all transitions and error traces.

• Automatically generates of draft script from the model to jump start the verification process

2.3. ADVANCED V&V APPLICABLE TO DME
First, this section includes an overview of DME to provide a foundation for discussing applicability of V&V
Tools. Next, it provides an explanation of how new V&V tools (developed at NASA ARC by Charles
Pecheur and Carnegie Mellon by Reid Simmons) meet correctness and reliability criteria. Finally, this
section contains detailed recommendations for incorporating MPL2SMV/JMPL2SMV and Livingstone
PathFinder into DME.

1/25/2002



NEW V& V TOOLS FOR DIAGNOSTIC MODELING ENVIRONMENT (DME) Page 9

3. CORRECTNESS AND RELIABILITY CRITERIA

In general, correctness and reliability criteria for model-based diagnosis systems such as those
considered as part of 2ndGeneration RLV IVHM relate to the following three components:

Model-Based Diagnosis

I

model of

sensors

Figure 2: Model Based Diagnosis

• The diagnosis engine that applies generic reasoning principles to perform diagnosis

• The diagnosis modelthat provides domain-specific knowledge to the engine

• The physical system (with interfacing hardware and software) that is being diagnosed. System

control (like the Executive in Deep Space One) receives sensor readings from the physical
system and issues commands to the physical system.

1/25/2002
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Based on this the following correctness and reliability criteria can be defined:

Criteria

Internal Sanity

Accuracy

Suitability for Diagnosis

Physical System
Correctness

Desc-ription

Is the model internally well-formed?

These properties are general sanity checks independent of the specific
application. Typical examples include:

• Completeness: does the model contain all needed constraints? An
under-constrained model has missing information causing
ambiguity.

• Consistency: is the model free of unneeded constraints? An over-
constrained model has too many restrictions resulting in
contradictions.

Is the model a valid abstraction of the specified physical system?

This is hard to do completely, because the physical system is a complex
and heterogeneous entity, typically with a largely informal specification.
Nevertheless, one can maximize the confidence in the model accuracy by
verifying that it satisfies documented properties of the system (provided
those properties can be expressed at the level of abstraction of the model).

For example, suppose a physical property of the system requires water to
flow in and out of a pipe with no water retention in the pipe. The model
must indicate the amount of water in equals the amount out. If these two
properties are not equal, then the model does not accurately reflect the
physical system.

Is it possible to perform the required diagnosis?

More precisely, is it always possible to correctly detect and diagnose faults
or other conditions as specified in the requirements, assuming:
A perfect model (the model is the physical system) and
A perfect engine (diagnosis performs according to its specification)?

Deficiencies against this criterion often reflect overall design issues rather
than problems in the diagnosis system. For example the system may
require additional sensors if a fault can not be adequately detected and
isolated.

Does the implemented physical system match its specification?

This is impossible to formally prove in practice, considering that the
implemented physical system is a real-world entity with no complete formal
description. Nevertheless, rigorous development processes can minimize
the risk and impact of discrepancies.

It is important to ensure that interface drivers between the physical
components and the diagnosis system correctly implement the desired
abstractions. For example, sensor readings must be properly delayed
after actuator changes to allow for physical propagation delays.

1/25/2002
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Criteria "

Engine Correctness

Integration Correctness

Description .........

Does the implemented engine match its specification?

This is a hard part, considering the complexi!y of the algorithms involved. It
can be further decomposed in two steps:

• Do the algorithms correctly compute the specified results (a
mathematical proof problem)?

• Does the engine code correctly implement those algorithms (a
program verification problem)?

However, this verification needs to be addressed once, typically by the
engine developers. Once the engine has been verified, it can be viewed as
a stable, trusted part, much in the same way as programmers view their
programming language compiler.

Does the interaction of the diagnosis software with its operating
environment meet system requirements?

Alternative approaches may use an application-specific engine, compiled from the model at development
time rather than interpreted at run-time. In this case, the generic part is the compiler rather than the
engine, but the arguments above remain essentially the same.

The first three criteria (internal sanity, accuracy and suitability for diagnosis) apply to the diagnosis model,
while the remaining three apply to other parts of the diagnosis system and its environment.

Internal sanity is a pre-requisite for other application-specific criteria.

The next four criteria form the basis of the following compositional argument for global correctness:

IF the desired diagnosis can be performed,
assuming the specified model and engine (Suitability for Diagnosis), and

the implemented engine matches its specification (Engine Correctness), and
the specified physical system matches its model (Accuracy), and
the implemented physical system matches its specification (Physical System Correctness),

THEN the implemented system can perform the desired diagnosis.

Integration correctness carries this argument to the next system level.

Appendix A, Model-based Verification of Diagnostic Systems, contains a thorough discussion of issues
surrounding verification of diagnostic systems like IVHM.

1/25/2002
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4. TOOLS FOR V&V OF MODEL BASED REASONING

According to the Survey of Current V&V Processes/Methods in Report 1, Advanced IVHM Software has
been used primarily on experimental missions because it is difficult to adequately verify this software in
accordance with NASA standards and guidelines for certification of airborne software for the following
reasons:

• Autonomous onboard planning technology challenges the comfort level of the team responsible
for certification per NASA guidelines. It is difficult to move past the mindset of expecting
complete predictability from an autonomous system. However, the Deep Space One Remote
Agent Experiment demonstrated that the paradigm shift is indeed possible because it performed
a flawless demonstration of onboard planning and the formal verification techniques before and
after flight proved successful in identifying deadlock issues and other anomalies common to
autonomous systems.

• While there are no new processes, methods and tools for V&V of autonomous systems
specifically noted in the NASA guidelines, these guidelines are flexible enough to allow addition of
such techniques as long as they meet the overall criteria in the guideline. Report 2 contains a
section describing how to incorporate new processes, methods and tools into the Software Life
Cycle in accordance with NASA guidelines.

• Testing coverage of autonomous software behaviors becomes more difficult due to the larger
numbers of possible combinations of parameters and higher numbers of possible interactions
between subsystems. This is a testing coverage problem that can be mitigated by restricting
harmful interaction "by design" and by using powerful, new V&V tools to automate testing of
autonomous systems. Two new V&V tools are described below.

This section discusses new tools to automate verification of Livingstone Models, a key technology
proposed for 2 '_ Generation RLV IVHM. Tools include MPL2SMV/JMPL2SMV and Livingstone
PathFinder.

4.1. MPL2SMV

MPL2SMV is a tool to automate model checking for Livingstone models. It was co-developed by Charles
Pecheur at NASA ARC and Reid Simmons at Carnegie Mellon University. Using MPL2SMV, developers
can take an MPL model, specify desired properties in a natural extension of the MPL syntax, use SMV to
check them and get the results in terms of their MPL model without reading or writing a single line of SMV
code.

The benefits of MPL2SMV are listed below:

• Provides robust verification of advanced IVHM software making it possible to meet stringent
certification standards so the 2r_ Generation RLV can take advantage of advanced IVHM
software in flight and on the ground

• Shields Livingstone application designers from the technicalities of SMV (Symbolic Model
Verifier) while providing them access to powerful model checking capabilities

• Improves reliability of Livingstone models making missions using Livingstone safer

• By investigating all model states during a simulation, MPL2SMV quickly finds anomalies during
early phases of the Software Life Cycle, thereby reducing program costs

This section includes the following:

• Introduction to MPL2SMV

• Overview of Livingstone

1/25/2002
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• Description of SMV

• Verification of Livingstone Models

o Model Translation

o Specifications Translation

o Traces Translation

• Applications

o Deep Space One

o Mars In-Situ Propellant Production (ISPP) Plant

• Lessons Learned Using MPL2SMV

4.1.1. Introduction to MPL2SMV 1

A Model Checking tool, like SMV, can efficiently check all possible execution traces of a system in a fully
automatic way. By simulating every execution trace, anomalies appear that are difficult, if not impossible,
to find using traditional testing methods.

In order to use SMV, the system being verified must be translated into special SMV syntax. Previously,
this was a tedious and complex manual task. Now, MPL2SMV automates this translation process. It
converts a Livingstone Model and the specification from Livingstone to SMV syntax and then converts a
diagnostic trace from SMV back to Livingstone.

A full understanding of Livingstone and SMV is not required to use MPL2SMV; however, relevant
information about both is included in the following sections as a basis for explaining the inner workings of
MPL2SMV.

1/25/2002
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4.1.2. Overview of Livingstone1

Livingstone is a model-based health monitoring system developed at NASA ARC. It uses a symbolic,
qualitative model of equipment to infer state and diagnose failures. Livingstone is one of the three parts
of the Remote Agent (RA), an autonomous spacecraft controller (described in Report 1).

Livingstone is also used in other applications such as the control o1:a propellant production plant for Mars
missions and the monitoring of a mobile robot.

Figure 3: Livingstone Mode Identification (MI) and Mode Recovery (MR shows how Livingstone
functions.

state goal path

sensors MI MR i commands

Figure 3: Livingstone Mode Identification (MI) and Mode Recovery (MR) 12

The Mode Identification (MI) module estimates the current state of the system by tracking the commands
issued to the device. Then, it compares the predicted state of the device against observations received
from actual sensors. If a discrepancy occurs, Livingstone performs a diagnosis by searching for the most
likely set of component mode assignments that are consistent with the observations. Using this
diagnosis, the Mode Recovery (MR) can compute a path to recover to a given goal configuration.

The model used by Livingstone describes the normal and abnormal functional modes of each system
component using Model Programming Language (MPL).

Components are parameterized and described using variables with discrete values. Each component
has a set of modes identifying nominal and failure modes. Each mode specifies constraints on the values

1/25/2002



NEW V&V TOOLS FOR DIAGNOSTIC MODELING ENVIRONMENT (DME) Page 15

that variables may take when the component is in that mode and how the component can switch to other
modes.

(defvalues flow (off low nominal high))

(defvalues valve-cmd (open close no-cmd))

(defcomponent valve (?name)

(:inputs (cmd _type valve-cmd))

(:attributes ((flow ?name) :type flow) ...)

(closed :type ok-mode :model (off (flow ?name))

:transitions ((do-open :when (open cmd) :next open)

(open :type ok-mode ...)
(stuck-closed :type fault-mode ...)

(stuck-open :type fault-mode ...))

...))

Figure 4: Partial MPL Model of a Valve 1

Figure 4: Partial MPL Model of a Valve 1 presents salient parts of a simple MPL model with a variable flow

ranging over {off, low, nominal, high}. It has two nominal modes open and closed and two
failure modes stuck-open and stuck-closed. The closed mode enforces flow=off and allows a

transition do-open to the open mode, triggered when the cmd variable has value open.

4.1.3. Description of SMV 1

SMV is a symbolic model-checking tool. Model checking is based on the exhaustive exploration of a
system's achievable states. Given a model of a concurrent system and an expected property of that

system, a model checker will run through all possible executions of that system, including all possible
interleavings of concurrent threads, and report any execution that leads to a property violation.

Classic, explicit-state model checkers, like SPIN, trace system executions by generating and exploring

every single state. This can lead to a problem called "state space explosion" because a system can have
a huge number of states. Therefore, explicit-state model checkers sometimes run out of memory and
cannot complete system verification.

Symbolic model checkers, like SMV, offer a technique for mitigating state space explosion. Instead of

generating and exploring every state like explicit model checkers, symbolic model checkers manipulate
whole sets of states at a time.

A set of states is evaluated for each transition by implicitly representing the states as the logical

conditions the states satisfy. Sets of states are encoded as Binary Decision Diagrams (BDDs). BDDs are

a special representation for Boolean formulas that is often more compact than traditional representations.
BDDs are constructed by removing redundancy from Binary Decision Trees. 9

A BDD is a graph structure used to represent a Boolean function, that is, a function f over Boolean

variables bl,...,bn with Boolean result f (b_...,bn). Each node of the graph carries a variable b; and has
two outgoing edges. It can be read as an if-then-else branching on that variable, with the edges

corresponding to the/fand else part. The leaves of the BDD are logical values 0 and 1 (i.e. false and

true). For example, a BDD for f (a,b,c) = a V (b A c) is shown in the following figure:

1/25/2002
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F

,£

T

F

T F

Figure 5: BDD for a V (b A c) s

Using BDDs, Symbolic Model Checking can verify much larger state spaces than explicit-state model

checkers making it possible to verify larger, more complex systems.

1/25/2002
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4.1.4. Verification of Livingstone Models

MPL2SMV supports three kinds of translations as shown in the following figure.

_, =.,_:..-. _.. ..... _ ........... _:.,-

I

i I ¸

Legend:

1. The MPL/JMPL model must be translated to a SMV model

2. The specifications to be verified for this model must be translated to SMV

3. The diagnostic traces produced by SMV must be converted back to MPL/JMPL. This

functionality will be included in future releases.

Figure 6: Translation between MPL/JMPL and SMV _

The following sections provide details about these three types of translations.
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4.1.5. Model Translation1 &2

The translation of MPL models to SMV models is facilitated by strong similarities between the underlying

semantic frameworks of Livingstone and SMV. Both boil down to a synchronous transition system

defined through propositional logic constraints: I on initial states, C all states and Ton transitions. Based
on this, there is a straightforward mapping of language elements from MPL to SMV shown in the following

table:

MPL Description

Attribute type

Elementary component

Compound module

Component Attribute

Sub-components

Mode Transitions

MPL Syntax .........

(defvalues T (V...))

(defcomponent C ...)

(defmodule M...)

(:attributes (A :type T)

(:structure M ...)

SMVSyntax

{v .... }

MODULE C ...

MODULE M...

VAR A : {V ....};...

VAR X : M;...

:transitions ... TRANS ...

Mode Constraints :model ... INVAR ...

ComponentConstraints :facts ... INVAR ...

Initialconditions :initial-mode INIT...

Table 1" Mapping of MPL to SMV E'lements 2

Translation of transition relations must allow for fault transitions. Therefore, for each component a

DEFINE declaration is produced that defines a symbol faults as the set of its fault modes. Then each
MPL transition from a mode M to a mode M' with condition P is translated into the following SMV

declaration:

TRANS (mode=M & P) -> (next (mode) =M' I next (mode) in faults)

Figure 7: SMV Model of a Valve presents the SMV conversion of the MPL model in Figure 4: Partial
MPL Model of a Valve 1

MODULE valve

VAR mode: {open,closed, stuck-open,stuck-closed};

cmd: {open,close,no-cmd};

flow: {off,low,nominal,high};

DEFINE faults:={stuck-open, stuck-closed};

INVAR mode=closed -> flow=off

TRANS (mode=closed & cmd=open) ->

(next(mode)=open I next(mode) in faults)

Figure 7: SMV Model of a Valve
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4.1.6. Specifications Translation1

Specifications to be verified with SMV are added to a MPL model using the new defveri fy declaration.

This defverify declaration also defines the top-level module to be verified.

Properties to be verified are expressed in a Lisp-like style that is consistent with the MPL syntax. Their
translation function is an extension of the MPL logic formulae translation. The following three figures

show a specification in English, MPL and SMV, respectively.

Specification: from a non-failure state, a high flow in valve 1 can eventually be reached

Figure 8: Specification in English 1

(defverify

(:structure (ispp))

(:specification

(always (globally (implies

(not (broken))

(exists (eventually (high (flow valw_-l)))))))

Figure 9: Specification in MPL 1

MODULE main

VAR ispp : ispp;

SPEC AG ((!broken) ->

EF (ispp.inlet.valve-l.flow=high))

Figure 10: Specification in SMV 1

4.1.7. Traces Translation1

When a violated specification is found, SMV reports a diagnostic trace consisting of a sequence of states
leading to the violation. This trace is essential for diagnosing the nature of the violation.

The trace lists variables by their SMV names making it challenging for a Livingstone developer to

decipher. Future releases of the JMPL2SMV will convert the trace back to the original Livingstone model
names.

4.1.8. Applications

MPL2SMV was used successfully in the following applications:

Deep Space One Remote Agent Experiment _

The Livingstone model for Deep Space One Remote Agent Experiment (DS1-RAX) consists of several
thousand lines of MPL code. Using MPL2SMV, it was automatically converted to SMV models and

several important internal sanity properties were verified consisting of:

• Consistency: Is the model free of unneeded constraints?
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• Completeness of mode transition relations: Does the model contain all needed constraints?

• Reachability of each mode- Can states for each mode be reached?

Using MPL2SMV, engineers were able to identify several bugs in the DS1 models even after these
models had been extensively tested by more traditional means.

In-Situ Propellant Production (ISPP) 1
MPL2SMV was used at NASA Kennedy Space Center by the developers of a Livingstone model for the
In-Situ Propellant Production (ISPP) system that will produce spacecraft propellant using the atmosphere
of Mars.

Initial experiments indicated that MPL2SMV could easily convert thHsmodel into SMV to verify useful
properties like reachability of normal operating conditions or recovery from failures.

The current ISPP Livingstone model has 10s°states but little depth (all states can be reached within at
most three transitions). It can be verified in less than a minute using SMV optimizations!

The same internal sanity properties checked for DS1-RAX were verified for ISPP plus some model
accuracy constraints were also checked. For example, if all active ,components were turned on and no
fault occurred, then ISPP should function properly and produce chemicals.

4.1.9. Lessons Learned Using MPL2SMV 1

Verification of a Livingstone model is very different from verification of more conventional concurrent
applications.

While a typical concurrent system is a collection of active entities each following a well-scoped algorithm,
Livingstone describes a passive component such as a tank, valve or sensor and states how this
component reacts to external commands. It hardly ever imposes any kind of order of operations on the
component itself.

Additionally, failures amount to unrestricted spontaneous transitions in every component that allows them.
This results in state spaces that have a peculiar shape:

• A huge branching factor (one state can transition to a huge number of next states) due to all the
command variables that can be set and all the failures that can occur at any given step

• Very low depth (reach all states with very few transitions), due to little inherent sequential
constraints in the model

This peculiar shape affects the manner in which properties that can be verified. Consistency and
completeness properties can be verified. It is important to verify these properties because the declarative
nature of MPL makes it easy to develop an over- or under-constrained model.

MPL2SMV is a useful tool but has a few limitations:

• Cannot establish that the Livingstone MI will properly identify a situation, but it can establish that
there is insufficient information to properly identify a situation. This line of work is under
investigation at NASA Ames.

• Does not address the interaction of Livingstone with other parts of the system including real
hardware with hard timing issues
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4.2. JMPL2SMV
Reid Simmons at Carnegie Mellon University developed JMPL2SMV. It works like MPL2SMV, but was
designed to translate the new model type in the new version of Livingstone.

Livingstone was originally written in LISP. However, due to problems certifying LISP to fly on NASA
missions, Livingstone was re-written in C++. To avoid confusion the new Livingstone software was
nicknamed L2. It functions like Livingstone, but L2 has a new modeling language is called JMPL.

JMPL2SMV translates the JMPL model to SMV. For purposes of this report, JMPL2SMV functionality
and benefits are identical to MPL2SMV described in section 4.1.

4.3. Livingstone PathFinder (LPF)

The Livingstone PathFinder (LPF) is a tool developed by Charles Pecheur, NASA ARC, for automatically
analyzing Livingstone-based diagnosis applications.3

The benefits of Livingstone PathFinder (LPF) include:

• Provides automatic way to analyze Livingstone-based diagnosis applications across a wide range
of scenarios. Scenarios include tests for commands to be issued and faults to be injected making
verification of Livingstone fast and robust.

• Contains a simulator for the device upon which diagnosis is performed making it possible for test
engineers to create a very effective test bed

• Provides flexible search strategies in different modes

• Automatically generates of draft script from the model to jumpstart the verification process

How LPF Works

LPF receives the following input:

• Livingstone model in a pre-compiled XMPL format with its associated harness and initial state
files

• Script describing a flexible scenario of events, a non-deterministic program describing a whole
family of possible executions. Scenarios describe both the commands to be issued and the faults
to be injected.

After obtaining input, LPF creates a Livingstone engine embedded into a simulation testbed and runs that
assembly through all executions described by the scenario. While running the scenario, LPF checks for
various selectable error conditions.
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Figure 11" Livingstone PathFinder

LPF Testbed

As shown in the figure above, the generic LPF testbed consists of the following:

• Driver: a component that enumerates the commands and faults according to a script provided
either as a file or directly entered on the command line. If no file or command line script is found,

LPF looks for a file with the same name as the model and an extension of .Ipf.

• MIR: a Livingstone engine performing diagnosis initialized from the user-provided Livingstone
model

• Simulator: a simulator for the device on which diagnosis is performed. Currently, this is a second

Livingstone engine initialized from the same or a separate model used for simulation

• Model Checking Engine: decides which paths to explore. ,Currently, it is a simple depth-first
search algorithm, but it may be replaced by more elaborate searches (goal-driven,

interactive, random, ...) in the future.

These three components are instrumented so LPF can single-step in both forward and backward

directions through an execution. A single-step corresponds to one Livingstone diagnosis cycle.

Error Conditions Supported

LPF supports checking for the following kinds of error conditions:

Simulator consistency- reports when the simulator reaches an inconsistent state. This typically

occurs after executing a command or injecting a fault that results in conflicts among the model
constraints and assignments. LPF also reports when no state completion was found.

MIR consistency- reports when MIR reaches an inconsistent state. This can occur either
following the interpretation of a command or the updating of observables, if diagnosis fails to find

any candidate.
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Mode comparison - compares the modes of all components in the simulator to those assumed by
MIR and report when there is a discrepancy. This provides a first estimation of states where
diagnosis may fail to perform as desired.

When an error has been reported, the search can proceed in either of the following ways:

• Find one error and stop searching

• Find all errors

• Find the shortest error trace: the search proceeds after finding an error but LPF limits further
execution to the depth of the last error found. This will report further errors only if they have
shorter traces than the last one reported.

Inconsistent states of either the Simulator or MIR are terminal states so execution will not proceed past
them even though a scenario may still have further events to process. Instead, the exploration will
backtrack to alternate routes.

LPF Modes
LPF is very flexible and provides the following modes of execution:

• Full exploration: complete setup with Driver, Simulator and MIR. This is the default.

• Simulation only: commands and faults are applied only to the simulator and not to MIR

• Driver only: LPF prints a complete execution trace of the driver

• Count: LPF computes and reports the number of state and traces produced by the driver for
each execution depth. This is useful to approximate the time required to verify a scenario. It is
good practice to count before testing complex scenarios.

• Create default script: No analysis is performed and the Livingstone model is scanned for
commands and fault modes to generate a default script. This script can be used to jumpstart the
verification process. It can be edited to fit more complex testing needs.

Summary
Livingstone PathFinder provides significant improvement over traditional test case generation. It is
currently being tested to verify Livingstone based projects at NASA ARC and initia_ feedback is very
positive.
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5. ADVANCED V&V APPLICABLE TO DME

The purpose of this section is to explain how Advanced V&V tools like MPL2SMV are beneficial to the
DME system planned for the 2 n'_Generation RLV. Because this section contains information described in

documents falling under the purview of the U.S. Munitions List (USML) as defined in the International
Traffic in Arms Regulation (ITAR), 22 CFR 120-130, it is export controlled and not available on this

website.
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6. ACRONYMS

Term

ACB

AI

ANSI

BDD

CCB

CCP

CCWS
L

CLCS

CM

CMM

COTS

CVS

DAR

DCR

DDP

DP-2

DRP

DS1

EIA

EXEC

FEMA

FEMCA

GSE

Definition,

Application Control Board

Artificial Intelligence

American National Standards Institute

Binary Decision Diagram

Change Control Board

Command & Control Processors

Command & Control Workstations

Checkout & Launch Control System

Configuration Management

Capability Maturity Model

Commercial Off The Shelf

Concurrent Version System

Delivery Acceptance Review

Design Certification Review

Data Distribution Processors

Design Panel 2 - Requirements Design Panel

Data Recording Processors

Deep Space One

Electronic Industries Association

Smart Executive or EXEC

HIT

IEC International Electro-technical Commission

IEEE

IPS

ISO

IV&V

IVHM

LPS

MICAS

Failure Mode Effects Analysis

Failure Mode Effects and Criticality Analysis

Ground Support Equipment

Hardware Installation Test

Institute of Electrical and Electronic Engineers

Ion Propulsion System

International Organization for Standardization

(NASA) Independent Verification & Validation

Integrated Vehicle Health Management

Launch Processing System

Miniature Integrated Camera and Spectrometer
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Term Definition

MIL STD

MIR

Military Standard

NASA

NASA ARC NASA AMES Research Center

NASA/KCS

NPD

NPG

O&M

ORR

ORT

PCO

PR

PTR

RA

RAX

RCS

RLV

RMA

RTC

RTCA

Mode Identification Reconfiguration (also referred to as Livingstone)

National Aeronautical and Space Administration

NASA Kennedy Space Center

NASA Policy Directive

NASA Procedures and Guidelines

Operations and Maintenance

Operational Readiness Review

Operational Readiness Tests

Project Controls Office

Problem Report

Post-Test Review

Remote Agent

Remote Agent Experiment

Reaction Control System

Re-usable Launch Vehicle

Reliability, Maintainability, Availability

Real Time Control

STP

SVP Software Validation Procedures

SW Software

TC Test Conductor

TR

TRR

UML

UPPAAL

USA

V&V

VMC

VMS

Requirements and Technical Concepts for Aviation

Software Test Plan

Test Report

Test Readiness Review

Unified Modeling Language

Acronym based on a combination of UPPsala and AALborg universities

United Space Alliance

Verification & Validation
.,

Vehicle Management Computer

Vehicle Management System

Note: More Acronyms: http://www.ksc.nasa.gov/facts/acronyms.htrnl
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7. GLOSSARY

•:Term ': ........

Advanced Software

Algorithm

Aliasing

Automaton

Autonomous Systems

BDD

BEAM

CAD

Deterministic
Software

DSI express

Failure

Fairness Property

Fault

Fidelity

DefinitiOn : '_........

The term "Advanced Software" is used to describe model-based and/or artificial
intelligence (AI) software like model based reasoning software.

A rule or procedure for solving a problem 4

An alias at program point t is a pair (u, v) of references ((u,v) E R2where R is the
set of references in the program) that point to the same store location. In other
words, u and v give access to the same object.

Machine evolving from one state to another under the action of transitions. For
example, a digital watch can be represented by an automaton in which each
state represents the current hour and minutes (seconds omitted in this example),
there are 24x60 = 1440 possible states and one transition links any pair of states
representing times one minute apart s.

Autonomous systems rely on intelligent inference capabilities to be able to take
appropriate actions even in unforeseen circumstances. They enable a whole
range of new applications, such as sending autonomous robots to places where
it is too dangerous or expensive for humans and/or where human control is
difficult or not technically feasible 6 (for example, deep space).

Binary Decision Diagram - data structure for representing Boolean functions that
allows efficient computations and is used for symbolic model checking.

Beacon-based Exception Analysis for Multimissions is an end-to-end method of
data analysis intended for real-time fault detection. It provides a generic system

analysis capability for potential application to deep space probes and other highly
automated systems

Computer Aided Drafting. Software environment for drawing architectural plans
and engineering diagrams.

Software that always yields the same result for the same input

Diagnostics Development Tool for functiona_l modeling to enable convergence of
design diagnostics while providing design tradeoff analysis between Testability,
Reliability, Maintainability and Availability concerns. For more information:
http://www.dsiintl.com/Products/index.asp

Inability of a component or system to perform, as designed, during operational
and maintenance service life. For the purposes of IVHM, the terms fault
detection/isolation and failure detection/isolation are interchangeable.

Fairness property expresses that under certain conditions something will or will
not occur infinitely often

A hardware or software anomaly that propagates into a failure or maintenance
event. A fault may be an induced, manufacturing or material defect. In software,
a fault is caused by defective, missing or extra instructions or sets or related
instructions that result in one or more actual failures or create a problem that
results in a maintenance event.

Integrity of testbed. For example: low fidelity testbed may have a simulator
rather than actual spacecraft hardware. The highest fidelity testbed is the actual
hardware being tested
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DefinitionTerm

FMENFMECA

Formal Testing

Interleaving

JMPL

k-limiting

LISP

Liveness Property

Mode Identification

Mode Reconfiguration

FMEA - Failure Mode Effects Analysis

FMECA - Failure Mode Effects and Criticality Analysis

FMEA and FMECA aides in determining what loss of functionality occurs due to
an unremediated fault state

The term "formal testing" has two meanings. Traditionally, ''formal testing" has
been used to describe an official test occurring at the end of each life cycle
phase and demonstrating that software is ready for intended use. It includes the
following:

o Approved Test Plan and Procedure

o Quality Assurance (QA) witnesses

o Record of discrepancies (Problem Reports)

o Test Report

With the invention of more advanced software, the term "formal testing" also
refers to a type of mathematical testing using Formal Methods. Formal Methods
include the following types of tests:

o Model Checking

o Theorem Proving

o Static Analysis

o Runtime Monitoring

Therefore, to avoid on confusion in this document, the traditional use of "formal
testing" has been replaced with the term "official testing". The term "formal
testing" used in this document means formal mathematical testing (i.e. Formal
Methods).

Ordering of concurrent events in a program

Java-style Model Programming Language for designing Livingstone models

Lists only up to a depth of k or k is the limit of the list

Functional programming language widely used for AI applications

Liveness property expresses that under certain conditions something will
eventually occur.

Mode Identification observes commands, receives state information and uses
model-based inference to deduce the state and provide feedback

Mode Reconfiguration serves as a recovery, expert. It takes constraints and uses
declarative models to recommend a single recovery action.

Model Checking

Nominal

Non-deterministic
Software

Technique for verifying finite-state concurrent systems 9

Expected behavior for no failure, for example: nominal behavior for a valve may
be "open" or "shut"

Software that can yield different results for the same input
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_: DefinitionTe_ : i

Off-nominal

Partial Order
Reduction

Program

Reachability Property

Regression testing

Safety Property

Software Life Cycle

State

Temporal Logic

Transition

UPPAAL

Validation

Verification

Unexpected failure behavior, for example: off-nominal behavior for a valve may
be "stuck open" or "stuck shut"

Reduces the number of interleaving sequences that must be considered for
model checking

The term "Program" is used as a generic term to describe a mission or project
conducted at NASA. For example, this document contains a survey of the Deep
Space One Program, rather than the Deep Space One Mission.

Reachability property states that some particular situation can be reached

Extrapolates the impact of the changes on program, application throughput and
response time from the before and after results of running tests using current
programs and data. 8

Safety property expresses that under certain conditions, something never occurs

The Software Life Cycle is defined as the steps or phases required to develop
software, starting with a concept and ending with a working product or system

Snapshot or instantaneous description of the system that captures values of
variables at a particular instant in time 9

Temporal logic is a form of logic that provides the capability to reason about how
different states follow each other over time

The change described by the state before an action occurs and the state after
the action occurs

UPPAAL is a toolbox for validation and verification of real-time systems
described as networks of timed automata. The current version of UPPAAL is
implemented in C++, Motif and Xforms. The traditionally encountered explosion
problems are dealt with in UPPAAL, by a combination of on-the-fly verification,
together with a symbolic technique reducing the verification problem to that of
solving simple linear constraint systems. In addition, optimization techniques for
reducing the time and space requirements of the verification procedure have
been implemented.

Ensuring that each step in the process of building the software yields the right
products (Build the Right Product)

Ensuring that software being developed or changed will satisfy functional and
other requirements (Build the Product Right)

1/25/2002



NEW V&V TOOLS FOR DIAGNOSTIC MODELING ENVIRONMENT (DME) Page 30

8. Appendix A:
Systems

Model-based Verification of Diagnostic

Working notes by Dr. Steve Brown, Northrop Grumman

Verification and validation of diagnostic 1systems is very important, because the diagnostics presented
may lead to crew/flight/mission safety critical decisions. In addition, the actual costs associated with
informed maintenance will be strongly influenced by how well informed that maintenance is.

Sections 16.2 - 16.4 of this paper discuss diagnostic system requirements (nominal and failure modes) in
terms of both the infinite-dimensioned client system space and the finite-dimensioned diagnostic system
space. Unfortunately, it is difficult to create an explicit detailed representation of modes in either space,
because the parameter values associated with each mode are themselves complex functions of other
parameters, and some or all of these parameters may be infinitely valued. Sections 16.5 - 16.7 discuss
shifting the focus of verification from verification of the system as a whole to verification of a
problem-specific model used within the system. In addition, to the extent that the diagnostic problem
definition explicitly declares system modes, these modes may themselves be defined by functional
models of system behavior. These "definition models" will themselves then require validation against the
real physical system.

8.1. Verification to Design Requirements
The NASA Goddard Independent Verification and Validation Group define Verification and Validation as:

Verification asks, "Is the product being built right?" It is the process of determining whether or not the
products of a given phase of the software development cycle fulfill the established requirements.

Validation asks, "Is the right product being built?" It evaluates software at the end of the development
lifecycle to ensure that the product not only complies with standard safe_ requirements and the
specific criteria set forth by the customer, but performs exactly as expected.

Validation compares the finished product against top level customer requirements, as discussed in
Section 2. Verification does the same, except it compares each phase and/or component in the system
development process to a set of derived requirements defined for each phase and/or component. In
verification, the correctness criteria applied at the end of each phase are that the system or component
meets the design requirements imposed at the beginning of that phase. Verification is simpler, in that the
requirements for each phase are usually more explicit than the overall validation requirements. On the
other hand, this adds the problem of validating the requirements generated for each phase.

8.2. Problem Statement in Diagnostic :Space {D}
The diagnostic problem consists of examining an engineering system (the client) and determining
whether its current state corresponds to one or more distinct failure modes 3. In particular, a diagnostic

system attempts to divide all possible states of the system into:

1. States which represent nominal modes of the system (everything responding normally).

2. States which represent off-nominal modes of the system, including:
a) States which represent one or more defined failure modes of the system,
b) States which represent one or more undefined failure modes of the system, and

1As usual for TA-5 documents, the term "diagnostic" can generally be taken to also include "prognostics" over
various timeframes.

2 http://www.ivv.nasa.gov/faq/index.shtml
3 Two modes are distinct if they are distinguishable, given all possible information about the client system. We will
assume that by definition that all failure modes are distinct from all nominal (non-failure) modes.
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c) States which represent some mixture of a) and b).

In practice, however, a diagnostic system will not have an omniscient view of its client. Instead the
diagnostic system will define the client system in terms of a finite set of diagnostic parameters {D},
including:
• parameters with known or imposed values
• parameters that can be sensed
• parameters that can be inferred from other parameters (including parameters evolved through prior

history of the system).

In general a diagnostic parameter
• may be enumerated, integral, or continuous
• need not be finite in range
• need not be independent of the other diagnostic parameters.

The prognostic problem consists of examining an engineering system (the client) and determining
whether its current state corresponds to a precursor state associated with one or more distinct failure
modes. Although the remainder of this discussion will focus on the diagnostic problem, it can readily be
extended to prognostics by simply treating the precursor modes as "subcriticar' faillure modes.

8.3. Verification of the Diagnostic System Requirements
The true client system is typically described by an infinite number of possible engineering parameters,
covering both its internal state and its environment (external state). The diagnostic system approximates
this infinite parameter space with a finite diagnostic space {D}, which implies that tlhediagnostic system
can never exactly express the full range of the client system. General verification ,ofthe diagnostic
system thus consists of two problems:

1. Verification of the Diagnostic System Requirements: Verifying that the diagnostic space, and the
problem description defined in terms of that space, are adequate to express the requirements
demanded of the actual client system. This requirement can, in turn, be broken down into two
sub-requirements:
a) Verifying that the diagnostic space, and the problem description defined in terms of that

space, are adequate to express the requirements demanded of the actual client system as those
requirements are understood at design time.

b) Verifying that the actual deployed client system (including its environment) match the design
time understanding of that system to an acceptable degree.

2. Verification of the Implemented Diagnostic System: Verifying that the implemented diagnostic system
fulfills the requirements given as defined within that diagnostic space?

In general, verification of the implemented system against the diagnostic system design requirements (2)
is a more tractable problem than verifying the design requirements against the actual client system
requirements (1).

8.4. Fundamental (Black Box) Requirements
The fundamental requirements of a diagnostic system can, in principal, be defined without regard to the
manner in which the requirements are implemented; i.e. treating the diagnostic system as a black box.

The first set of requirements defines correct operation of the diagnostic algorithm(s):
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.

Recognition of Nominal Mode(s)
For all possible states of the system for which nominal mode descriptions have been provided, the
system shall correctly identify all states that correspond to defined nominal modes 4.

Detection of Anomalous Modes
For all possible states of the system for which nominal mode descriptions have been provided, the
system shall correctly identify all states that do not correspond to any defined nominal mode.

Nominal Robustness
For all possible states of the system, the system shall correctly identify all states that do not
correspond to a defined nominal mode (i.e. ones for which no nominal mode descriptions have been
provided). Nominal robustness prevents the system from reporting an anomalous mode simply
because it does not know what "nominal" would look like in this state. Instead the system should
report "undefined state".

4. Fault Recognition
For all possible states of the system for which description(s) of a given failure mode have been
provided, the system shall correctly identify all states that correspond to the defined failure mode.

5. False Alarm Avoidance
For all possible states of the system for which description(s) of a given failure mode have been
provided, the system shall correctly identify all states that do not correspond to the defined failure
mode.

6. Fault Robustness
For all possible states of the system, the system shall correctly identify all states for which a given
failure mode has not been defined.

Assuming the above requirements are all met, we can then define an additional desirable condition
for the system:

Ideal Fault Isolation
For all possible states of the system, there should

• Never be a state which corresponds to one or more defined nominal modes and one or more
defined failure modes (nominal/failure ambiguity)

• Never be a state which corresponds to two or more distinct failure modes (failure ambiguity)
unless the ambiguities in question have been specifically allowed.

It is important to recognize that, while requirements 1-6 define correctness of the algorithm, the maximum
possible extent to which fault isolation can be achieved is a property of the problem definition itself. The
diagnostic system space normally spans a finite number of discrete parameters. It is quite common to
have cases in which, for some region(s) of the diagnostic space, a lfailure mode overlaps one or more
different nominal and/or failure modes.
• Given this diagnostic space and problem definition, no possible algorithm can isolate beyond this

ambiguity group.
• Failure of an algorithm to meet requirements 1-6 can, however, increase the level of ambiguity

beyond the minimum possible.

4This description is not quite as circular as it may appear. For a diagnostic system defined over {D }, a given mode
definition might be valid over a fixed range of some subset of these parameters {d} c {D}. The mode definition
itself would then typically define nominal ranges for the complimentary set {D } - {d}.
Example: Assume the diagnostic space {D} = {launch_.phase, temperature_l, temperature_2 }, where
launch__phase can take on the enumerated values [on__pad, lift_off, cleared_tower].
If {d} = {launch_phase }, then a particular nominal or failure mode could be defined as limits on the complementary
set {temperature_l, temperature_2 } for launch..phase = lift_off and launch._phase = cleared_tower. In the
subspace corresponding to launch_.phase = on__pad the mode would be undefined.
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Thus a feasible requirement on fault isolation must be worded something like:

7. Fault Isolation
For all possible states of the system, to the limit possible within the given diagnostic state representation,
there shall

• never be a state which corresponds to one or more defined nominal modes and one or more
defined failure modes (nominal/failure ambiguity)

• never be a state which corresponds to two or more distinct failure modes (failure ambiguity)
unless the ambiguities in question have been specifically allowed.

In principal it is always possible to disambiguate two modes, given additional system information
necessary and sufficient to the disambiguation in question. Put another way, if the diagnostic space
spanned all possible system parameters, all distinct modes could, by definition, be disambiguated. In
practice what this means is that even if a given diagnostic space cannot disambiguate a set of modes,
sometimes a second system can by employing a different diagnostic space.

8.5. Derived (Implementation Specific) Requirements
Unfortunately, the only direct way to prove the fundamental requirements 1-7 would be to examine every
possible point in the system space (exhaustive search). Even if we restrict ourselves to verifying the
diagnostic system against its design requirements, the number of test points in {D} typically ranges from
large to infinite.

An alternative approach that indirectly verifies the fundamental requirements can be applied when three
conditions are met:
1. The diagnostic system employs a specific set of algorithms, methods and procedures that are known

to meet these requirements, so long as the problem specific inputs to the system (the "model") are
correct.

2. The specific implementation of these algorithms, methods and procedures, is shown to be correct.
3. The problem specific model is shown to be correct.

Validation of any specific algorithm set is beyond the scope of this program. In practice certain algorithms
are usually "trusted", and accepted without further validation.

The level of validation typically applied to a specific implementation (diagnostic engine) depends on both
its "trust" level and the tools available for validation. Because the diagnostic engine is typically written in
a general purpose programming language, it can be very difficult to "prove" its correctness. Engines are
normally validated through general SEI-type practices (i.e. written under a formal Software Development
Plan, validated through some kind of test suite).

Our specific focus in the TA-5 is on verification of the problem specific model. Under the assumptions
listed above, it should be clear that it is this model which contains all of the diagnostic system's
knowledge about system specific nominal and failure modes. The way in which that knowledge is
represented, and what constitutes verification of that knowledge, depends on the specific form of the
model (which is, in turn, a function of the specific algorithm and engine to be applied).

Verification of the model to the engine is primarily a matter of syntax; i.e. validating that the specific
representation of the model provided to the engine will be interpreted as intended with reference to the
underlying algorithm.

This leaves only verification of the model with respect to the original design problem, where verification is
understood to be within the context of the underlying algorithms to be applied.
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8.6. Deficient Algorithm/Model Forms
Above, it was stated that the algorithm set applied is required to meet fundamental requirements 1-7, so
long as the model itself is correct. In practice we sometimes use diagnostic algorithms that are known to
not meet all of these requirements. Such an algorithm may be deficient in one or more of these
requirements, yet still be useful for certain applications. In this case '_erification" techniques may be
used to flush out deficiencies, which then must be either corrected (if correctable) or accepted (if inherent

to the algorithm).

8.7. Model Verification and Validation: Functional (System

Hardware) Models
In Section 5 it was claimed that, by using trusted algorithms, the diagnostic system verification problem
could be reduced to verification of its system specific model. In particular, algorithms such as
Model-Based Reasoning (MBR) represent the nominal and failure modes of a system by constructing a
functional model of the physical system itself.

• The parameters of this model constitute the diagnostic space {D}.

• The absence or presence, and perhaps severity of each defined root failure mode is typically a
parameter of the system, with the observable effects of the failure on the system (fault signature)
generated through causality relations built into the model.

• Nominal modes are simply defined as the system response in the absence of any defined failures.

• The control states of the model {d} c_{D} typically represent external environment and commanded
states. As discussed in Section 4, one of the characteristics of a well behaved model the ability to
recognize when the values of {d} are out of a range for which the functional model is known to be
valid.

Because functional models directly model the physics of the client system, they have some interesting
verification characteristics. In particular:

1. The diagnostic system requirements are encoded directly into the model; and this model itself may be
the only extant detailed definition of the system's normal and failure modes. If there is an external
definition of the client system modes, it will typically be in the form of an even more elaborate
functional model (which would itself require verification).

2. Validation of the diagnostic system requiiements against the client system requirements, at design
time or in operational use, consists of validating the functional model against the client system.

Based on the above arguments, we will now claim the following:

Verification of a diagnostic system based on a functional model consists of.

,

2.

Universal validation (or trust) of the diagnostic algorithms and their specific implementation.

Specific verification of the problem specific functional model against the physical characteristics of the
client system:

a) Verification that the representation of the client system is correct (within the limitations of
the given model form).

b) Verification that the representation of the client system is adequate to express the
behaviors of interest, including specifically the response of sensed observable parameters to
internal and external system states.

Validating correctness of the functional model can include the use of formal methods to prove certain
characteristics and/or invariants that are known to be true of the client system, either because they are
true of the client system specifically, or because they are true for all physical systems. The physical
world, including the client system, is always self-consistent, and there are a number of physical laws (e.g.
conservation of mass) which must always hold. This means that large regions of the parameter space
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{D} can be declared invalid, and any legal transition within the model from a valid state to an invalid one
represents an error in the model.

Design verification of the diagnostic system against its client system is more difficult, because it requires
comparison to an independent and more trusted representation of that system. Ultimately verifying the
design understanding of the system against the physical reality can occur only after a sufficient number of
deployed systems have seen service, to establish both baseline behavior and variance over the life of the
system.

Finally, although the arguments of this section were focused on diagnostic models that are directly based
on functional models, they apply to some extent to any model that uses a functional model in its
construction. For example, a neural net trained using a simulation (functional model) of the client system
will, in general, not be valid unless the functional model used for training is also valid.

8.8. Conclusions
In the development of diagnostic systems both the overall validation requirements and the specific
verification requirements are expected to be of the form:

Given a set of sensible parameters {s} c {D }, detect failure mode "x" (if present), isolated to within the fault
isolation group {"y"}

Unfortunately, the normal and failure modes of the system will typically be described by reference to a
functional model of the client system. Diagnostic systems which themselves operate on a functional
model of the client system are, therefore, well suited to solving the stated problem; but are difficult to
verify, because they create the detailed requirements specification within their own implementation. They
are, in as sense, self-verifying, but only if the detailed requirements can be validated against the actual
client system. Two general approaches to this problem have been identified as applicable to the design
phase:

.

.

Formal methods applied to the functional model, used to verify that certain universal and problem
specific conditions and invariants are met for all applicable states of the model.

When available, simulation-based testing. This involves presenting the diagnostic model with a
sequence (one or more) of inputs (control and/or sensible parameters), and then comparing its
resulting diagnoses against results which are either known to be correct, or are at least "trusted" to a
higher degree than the diagnostic model.

Final validation of the system requires operational deployment of the client system, in order to generate
test sets which are certain to be correct. Even in this case, however, the client system may never explore
all possible failure states, and discovering incorrectly represented failure states may have catastrophic
costs. For these reasons our primary focus will remain on "up front" design verification of the system,
despite its inherent difficulty.
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